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Optimum control of  the process of  heating of  a porous body by a f low of  an incompressible liquid or gas is 

considered. The amount  of  heat energy accumulated in the porous body is selected as an optimization 

criterion. This amount  must  be maximized provided there are a prescribed amount  of  heat that can be 

transferred to the f low filtering through the porous body and prescribed duration of  the process. The control 

is considered to be exercised by means of  the temperature o f  the liquid (gas) f low on entry into the porous 

body. 

Accumulation of heat energy is one of the important directions in the application of porous media in power 

systems [1 ]. Calculation and optimization of heat- and mass-transfer processes in porous bodies are important for 

increasing the efficiency of such systems. It should be noted that in the foreign literature there has recently been 

a considerable amount of attention devoted to simulation of heat- and mass-transfer processes in porous media. In 

[2-5 ], a very general system of differential equations is considered and investigated numerically that describes 

forced convection of a liquid or gas through a porous body in the absence of thermal equilibrium between the liquid 

(gas) and solid phases. For this nonequilibrium to be taken into account, a two-phase model of a porous body is 

used that includes two energy equations (for the liquid and solid phases). Using this model, certain energy char- 

acteristics of the process of heat accumulation in a porous layer were investigated numerically in [6 ], and the 

difference between the temperatures of phases that appears within the framework of the two-phase model was 

analyzed in [7 ]. 
Many of the analytical works devoted to investigations within the framework of a two-phase model of 

heating or cooling of porous bodies employ the model of a porous medium suggested by T. Schumann [8 ]. This 

model considers the flow of an incompressible liquid (gas) through a porous body and neglects the terms that 

describe heat transfer by heat conduction in the energy equations for both the liquid (gas) and solid phase. We 

will follow this model below and make a substantial use of the following assumptions: 

�9 the liquid (gas) phase is incompressible and the flow rate in any transverse cross section of the porous 

body is constant; 

�9 the thermophysical properties of the liquid (gas) and solid phases are invariable; 

�9 heat transfer and the liquid (gas) flow are one-dimensional; 
�9 heat transfer by heat conduction is negligible in both the solid and liquid (gas) phases. 

It follows from [9 ] that under these assumptions the equations describing the temperature distribution in 

the liquid and solid phases can be written in the following dimensionless form: 

O0 O~ = 0 - ~o. (1) 
Ot - ~~ - 0 ' Oz 

Here the dimensionless temperatures of the solid and liquid (gas) phases are defined as: 

O _ m T s - T 1 T f -  T 1 
T 2 _  TI , ~o-  T 2 _  T! ' 
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where T 1 and T 2 are arbitrary constant temperatures selected for reasons of convenient normalization. For example, 

if Ts(0, 0) ;* Tr(0, 0), then we can select TI " Ts(0, 0) and T2 = TT(0, 0). 
The dimensionless time and coordinate in Eqs. (1) are defined as follows: 

t 

t - hat (2) 
(1 - e )  P s  cs 

F 

ha~ (3) 
Z - -  - -  

e p f  CpfV 

The coefficient of heat  exchange between the liquid (gas) and the particles of the porous body in Eqs. (2) 
and (3) can be calculated from a relation given in [101: 

where fl -- 10, if the particles of the porous body have a spherical shape. The value of the Nusselt  number  in this 
formula for Rep >100 is well correlated by an expression given in [11 1: 

NuTs 0.255 ~ i /3  ~ 2/a  - e r r  Kep . 

As follows from [12, 13 ], the estimates of the quantity NuTs at small values of Rep vary between 0.1 and 
12. 

The specific surface of contact between the solid and liquid (gas) phases, which also enters into Eqs. (2) 

and (3), can be calculated, according to [141, as a = 6(1 - e)/d. 
Analytical solutions of Eqs. (1) under  various boundary conditions are contained in [15-191. A solution 

for the case when the liquid (gas) temperature on entry into a porous body is dependent on time was obtained in 
[20 ] using a Laplace transform. System (1) was solved under  the following initial and boundary  conditions: 

e (z ,  0)  = o 0 ( z ) ,  ~o (0,  t) = ~,in ( 0 .  (4) 

After simple transformations, the solution obtained in [20 ] can be presented in the form 

t - J z  
O (z, t) = exp ( -  z) f ~ o i n ( t - 6 z - r )  e x p ( - t ) I  0 ( ~ / 4 ~ z ) a r + e x p ( 6 z - t ) •  

0 

[ ] x O 0 ( z ) + f  O 0 ( z - ~ ) e x p ( - ~ )  I 1 [ ~ / 4 $ ( t - ~ z )  ]d~ , (5) 
o 

where 

~, (z, t) = exp (~z - t) O 0 ( z - ~ ) e x p ( - ~ ) I  0 [~4~( t -6z )  l d ~ + e x p ( - z )  • 

I 1 X ~Pin (t  -- 67.) + f ~Oin (t - 6z - ~) exp ( -  r) I 1 (x/4Tz ) dr , (6) 
o 

6 = e pf cpr (7) 
(1 - e )  Ps %" 
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Equations (5)-(7) determine the temperatures of the solid and liquid (gas) phases at the point of the porous 
body with the coordinate z on arrival of a thermal perturbation at that point, i.e., when t _> 6z. Since in the model 

considered the heat transfer by heat conduction is neglected, hitherto the solid phase temperature was remained 

equal to the initial one prescribed by the function O0(z) in the first of Eqs. (4). 

We consider a one-dimensional porous layer of dimensionless thickness L (L - haL ' / ep fcp fv )  whose initial 

temperature is constant over the thickness. Thereby the dimensionless initial temperature O(z, 0) - O0(z) *- 0, if 

the constants Tl and 7"2 are selected as specified above. Such a choice of initial conditions substantially simplifies 
Eqs. (5) and (6), since the second term on the right-hand side of Eq. (5) and the first term on the right-hand side 

of Eq. (6) become identically equal to zero. 
Let the dimensionless temperature of the liquid (gas) on entry into the layer at z = 0 be prescribed by a 

certain function of time ~Oin(t ). Because of the temperature difference between the phases, the temperature of the 

liquid (gas) on exit from the layer at z ~, L will be somewhat higher than the solid phase temperature in the same 

position. In other words, a portion of the heat that could have been accumulated by the porous layer leaves the 

layer with the liquid (gas) flow. To increase the efficiency of thermal energy accumulation systems, it is important 

to find a method for minimizing these heat losses or, in other words, for maximizing the portion of heat accumulated 

in the porous body. 
Now we will set up the following optimal problem. For a prescribed amount of heat E to be transferred by 

heaters to the liquid (gas) flow and a prescribed duration of the process tf it is necessary to maximize the amount 

of heat accumulated by the layer. A s  a means of control, we will consider the dimensionless temperature of the 

liquid (gas) on entry into the layer ~Oin(t), which, as assumed, is a certain piecewise-continuous function of time 

and can vary from a certain minimum value Umin corresponding to the liquid (gas) temperature in a "cold faucet" 

up to a certain maximum value Umax corresponding to the liquid (gas) temperature in a "hot faucet." 

Mathematically, the given problem can be formulated in the following manner. It is required to find the 

maximum of the functional 

L 
�9 (~Oin) = f O (z, tf) d z  -~ max,  (8) 

o 

where the function O(z, tf) is prescribed by Eq. (5) with the following restrictions: 

tf 
J" 'Pin (r) dr = E = const, (9) 
o 

Umi n < ~Oin ( t )  < Ulna x . 
(10) 

In order to reduce problem (8)-(10) to the form of the problem of optimal control, we must transform 

functional (8). For this, we first write expression (5) for the function O(z, t) at t-- if, transforming it by the following 

substitution of the integration variable: 

r* = t f - ~ - $ z .  ( l l )  

With allowance for this substitution and with substantial use of the assumption that the initial temperature 

of the layer is constant (the choice of the constants T1 and T 2 was specified above), Eq. (5) at t = tf takes on the 

form 

t f -6z  
O (z, tr) = exp ( -  z) f ~oin (T*) exp ( -  tf + T* + c~z) x 

o 

X I 0 [X/ 4 ( t f  -- T* -- dz) z I d a * -  02) 
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Fig. 1. Graphs of the function ~ll - ~(t) and the optimal dependences ~ln(t) 
(a and b, respectively) for different durations of heating: 1) tf = 0.08; 2) 0.2; 
3) 1. 

We consider the function 

t F ( z , , ) =  I e x p ( - z -  t f + r + ~ z )  l 0 [ ~ / 4 ( t f - r - a z )  z ] ,  if 0_<r  < t f - f z ,  

[ u .  if ~ >  t f - J z .  
(13) 

Then, using Eqs. (12) and (13) and changing the order of integration, we can present functional (8) as 

L tf 
tl) (tPin) = f 0 (z,  tf) dz = f tpi n ( r )  '~ ( r )  at- ~ m a x ,  ( 1 4 )  

o o 

where 

L 
( 0  = f ~ (z, 7:) dz .  

0 

Problem (14), (9)-(10) is a problem of optimal control with isoperimetric condition (9) and with the control 
region prescribed by inequality (10). This problem can be solved by using the maximum principle (in Hamiltonian 
form) or the minimum principle (in Lagrangian form) [21-24 ]. The application of this theorem leads to the following 
relation, from which the optimal control ~in(t) can be found: 

A 

~Oin (t) [21 - " (t)] -" min,  (15) 

Condition (15), used with account for restriction (10), allows us to determine the optimal control ~in(t). 
Actually, it yields the following relations: 

A 

~Oin (t)  = Umi n 

A 

~'in (t) = Uma x 

for 21 - E ( t )  > 0 ,  

for 2 1 - ' ~ ( t )  < 0.  

(16) 

The application of relation (16) requires determination of the value of '~l- For this, it is necessary to solve 
integral equation (9) numerically with account for Eq. (16). 

This problem was solved as follows: a segment was prescribed inside of which the desired value of 21 was 
obviously contained, and then an algorithm was used for finding the root of nonlinear and transcendental equations 
on the prescribed segment, with Eq. (9) being considered as such. 
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Fig. 2. Temperature distribution in the solid phase on termination of heating 

at ~Oin(t) = ~Otn(t) (curves 1, 2, 3) and at ~Oin(t) = ~Oin(t ) (curves 1', 2', 3'): 1, 
I ') t f -  0.08; 2, 2') 0.2; 3, 3') 1. 

Figure la shows "function-controUer" '~1 - -  ~(t) curves for different durations of the process tf for the values 

of the parameters: Umin = 0, Umax " 2, E = tf, L "= 1, ~ = 0.05, and Fig. lb  presents graphs of the optimal controls 
~,"in(t) that correspond to these parameters. It is evident that in the case of a short duration of heating (tf -- 0.08) 

the optimum temperature ~o~in(t) is first equal to the maximum value Umax and then to the minimum one Umi n. As 
the heating duration (tr = 0.2) increases, a qualitative change occurs in the behavior of the optimum temperature,  

i.e., first ~O~ln(t) is equal to the minimum value, then to the maximum, and then again to the minimum one. With a 

further increase in the heating duration (tf == 1), this qualitative behavior persists, however, the third portion (when 
the optimum temperature is again equal to the minimum one) becomes smaller and smaller. 

At the values of the parameters used for calculating Fig. 1, the transition from the first type of optimum 
temperature behavior (maximum-minimum) to the second type (minimum-maximum-minimum) occurs at tf -- 
0.09913. 

It is of interest to compare the value of the functional r for the optimum functions shown in Fig. lb  

and for the functions ~oi*n(t ) = 1 that correspond to the time-constant inlet temperature of the liquid (gas). It is easily 

verified that at the values of E used for calculating Fig. 1, the functions ~oi*n(t ) -- 1 also satisfy isoperimetric condition 

(9). The calculations lead to the following relations: when tf = 0.08, r = 1.320 (the gain in the amount  
�9 . . A :l, 

of accumulated heat  in the case of the use of the optimum dlstnbut~on ~Pin(l) compared to the constant  gin is 32.0%) ; 

when tf -- 0.2, ~I)(~in)/Cl)(99in) -- 1.119 (the gain is equal to 11.9%), and when tf -- 1, r = 1.141 (the 
gain equals 14.1%). 

Figure 2 illustrates the results of the calculations performed. The figure shows the temperature distributions 

in the solid phase at t -- tf for the cases when ~Oin(t) = ~in(t) (i.e., with optimal selection of the functions ~Pin(t)) and 
~t 

when 9oin(t) = g i n ( t )  (i.e., at ~Oin(t) -- const). These distributions are calculated with the help of Eq. (5). As seen 
from Fig. 2, the curves corresponding to the solid phase temperature with the optimally selected functions ~Oin(t) 

(the graphs of these functions are shown in Fig. lb) are located above the curves that correspond to the constant  

inlet temperature of the liquid (gas). Thereby,  the choice of the optimal controlling action makes it possible to 

accumulate a large amount  of heat in a porous body. It should be emphasized that this can be attained due to a 

decrease in the amount  of heat that is ejected from a porous layer with the liquid (gas) flow leaving the layer 
through the boundary z -- L. 

C O N C L U S I O N S  

1. A procedure is suggested for optimizing the process of heating of a porous body from the condition of 

maximization of the amount  of thermal energy accumulated in the body. The control was considered to be exercised 
by means of the temperature of the liquid (gas) flow on entry into the porous body. 
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2. It is shown that an increase in the heating duration leads to a qualitative change in the behavior of the 
optimum temperature of the liquid (gas) on entry into the porous body. At a short duration of heating the optimum 
temperature is first equal to the maximum value and then to the minimum one. Conversely, for a long duration of 
heating the optimum temperature is first equal to the minimum value, then to the maximum, and once again to the 
minimum one. With a further increase in the heating duration, this qualitative behavior persists, however, the third 
portion (when the optimum temperature is again equal to the minimum one) becomes smaller. 

The author is grateful to the A. Humboldt Fund for providing a stipend to carry out the present work. 

N O T A T I O N  

a, specific surface of contact between the solid and liquid (gas) phases, m2/m3; cu, specific heat at constant 
pressure, J / (kg-K);  d, mean diameter of the porous body particles, m; h, coefficient of heat exchange between 
the porous body particles and the liquid (gas) phase, W/(m2.K); lv, modified Bessel function of order v; L', 
porous layer thickness, m; L, dimensionless thickness of the porous layer; Nuts ~" hd/,lr, Nusselt number; Rep = 
pfcd/l~, Reynolds number; Pr-l~cpf/;tf, Prandtl number; t', time, sec; t, dimensionless time; tf, duration of heating; 
T(z',t'), temperature, K; Umin and Umax, lower and upper boundaries of the range of admissible controls; v, velocity 
of the liquid (gas) flow, m/see; z', coordinate, m; z, dimensionless coordinate; 6, parameter; e, porosity; ~ll, 
Lagrange multiplier;/~, dynamic viscosity coefficient, Pa. sec; O(z, t), dimensionless temperature of the solid phase; 
O0(z), the same at t - 0; ~o(z, t), dimensionless temperature of the liquid (gas) phase; ~Oin(t), dimensionless 
temperature of the liquid (gas) phase entering the porous layer through the boundary z ffi 0; ~oin(t), optimum inlet 
temperature; ~ol*n(t ) - ~Oin o - const, function that prescribes the time-constant inlet temperature of liquid (gas); p, 
density, kg/m 3. Subscripts: f, liquid (gas) phase; s, solid phase; p, porosity. 
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